\begin{frage}[3]%% Ein Punkt
Für welche Werte von $n$ hat die folgende quadratische Gleichung \textbf{genau
eine} Lösung? Tipp: Berechnen Sie zunächst die Diskriminante. (Die
Lösung der quadratischen Gleichung, also das $x$, ist hier nicht gefordert.)

Berechnen Sie zunächst die Diskriminante und erinnern Sie sich, wann eine quadratische Gleichung genau eine Lösung hat. Berechnen Sie mit diesem Wissen die Variable $n$.


$$x^2 +2nx +4n = 0$$

Diskriminante $D$:
$$D = \LoesungsRaum{4n^2 - 4\cdot{}4n}$$

$$\mathbb{L}_n = \LoesungsRaumLang{\{0, 4\}}$$

\platzFuerBerechnungen{8.4}%%
\end{frage}